Finden Sie schnell unterschied selektives lasersintern laserschmelzen für Ihr Unternehmen: 20 Ergebnisse

2-D Laserbearbeitung, Wir bearbeiten ihre Werkstücke auf unseren Maschinen mit dem Laserstrahl - Schweißen, Löten, Beschriften

2-D Laserbearbeitung, Wir bearbeiten ihre Werkstücke auf unseren Maschinen mit dem Laserstrahl - Schweißen, Löten, Beschriften

Unser Engineering-Team ist spezialisiert auf die Durchführung von Projekten im Bereich der Lasermaterialbearbeitung. Dank langjähriger Erfahrung im Bau von Lasermaterialbearbeitungsmaschinen stehen wir unseren Kunden bei der Einführung fortschrittlicher Verbindungstechnologien wie Laserschweißen und Laserlöten sowie bei der Implementierung von Techniken wie Laserschneiden und Lasermarkieren unterstützend zur Seite. Durch unsere Dienstleistungen erhalten unsere Kunden nicht nur hochwertige Lösungen, sondern auch zusätzliche Investitionssicherheit. Im Bereich der Laserstrahl-Auftragsfertigung bieten wir eine Vielzahl von Dienstleistungen auf unseren modernen Lasermaterialbearbeitungsmaschinen an. Dazu gehören insbesondere: Laserschweißen von Metallen und Kunststoffen: Unsere erfahrenen Mitarbeiter nutzen fortschrittliche Lasertechnologie, um präzise und zuverlässige Schweißverbindungen herzustellen, sowohl für metallische als auch für kunststoffbasierte Werkstoffe. Laserlöten: Mit unseren hochmodernen Laseranlagen bieten wir effiziente und präzise Lötlösungen für eine Vielzahl von Anwendungen an. Ob in der Elektronik-, Medizin- oder Automobilindustrie – wir liefern maßgeschneiderte Lösungen für die individuellen Anforderungen unserer Kunden. Laserbeschriften: Unsere Lasertechnologie ermöglicht präzise und dauerhafte Beschriftungen auf verschiedenen Materialien. Ob Seriennummern, Logos oder individuelle Kennzeichnungen – wir bieten maßgeschneiderte Beschriftungslösungen für eine Vielzahl von Anwendungen. Unsere Laserstrahl-Auftragsfertigungsdienstleistungen zeichnen sich durch höchste Qualität, Präzision und Zuverlässigkeit aus. Wir arbeiten eng mit unseren Kunden zusammen, um ihre spezifischen Anforderungen zu verstehen und maßgeschneiderte Lösungen anzubieten, die ihren Anforderungen gerecht werden. Mit unserem umfangreichen Fachwissen und unserer modernen Infrastruktur sind wir der ideale Partner für Unternehmen, die qualitativ hochwertige und zuverlässige Lasermaterialbearbeitungsdienstleistungen benötigen.
Selektives Lasersintern (SLS)

Selektives Lasersintern (SLS)

Über das Selektive Lasersintern (SLS) werden räumliche Strukturen aus einem pulverförmigen Ausgangsstoff hergestellt. Schicht für Schicht wird durch einen Laser das 3D Druck Modell erstellt. Unter „Sintern“ wird ein Rapid Prototyping Verfahren verstanden, bei dem die Herstellung von 3D Modellen mithilfe eines Laserstrahls erfolgt. Das Ausgangsmaterial liegt in feiner Pulverschicht, deren Partikel der Laser verschmilzt und so das Pulver Schicht für Schicht miteinander verbindet. Demnach werden über das Selektive Lasersintern (SLS) räumliche Strukturen aus einem pulverförmigen Ausgangsstoff hergestellt. Dabei ist die Verarbeitung von verschiedenen kunststoffähnlichen Materialien möglich. SLS verschmilzt selektiv Pulvermaterialien wie Nylon, Elastomere, Alumide oder Polyamide. Auch bei diesem 3D Verfahren bildet eine 3D Grafikdatei des gewünschten Objektes die Grundvoraussetzung zur Herstellung des 3D Modells. Vorteile:: Hohe Steifigkeit, gute mech. Verschleißfestigkeit, hohes E-Modul (2900 N/mm²) Nachteile:: Leicht raue Oberfläche (rauer als PA2200), preisintensiv Farben:: Grundfarbe: Weiß, Einfärben möglich Bauteilgenauigkeit:: ~ 400 µm Zugfestigkeit RM:: 47-51 N/mm² Max. Betriebstemperatur:: 157 °C Härte:: 80 Shore D Min. Wandstärke:: 0,7 mm Schichtstärke:: 0,12 mm Max. Bauraumgröße:: 700 x 380 x 560 mm (größere Modelle durch mehrteilige Fertigung möglich)
Laserboxen aus Aluminiumprofil

Laserboxen aus Aluminiumprofil

Eine individuelle Anpassung an die Kundenwünsche und –anforderungen ist jederzeit möglich. Die max. Bauteilgröße beträgt 400 x 400 x 400 mm. Die Laserbox hat die Laserklasse 1 mit einem CE-Zeichen.
Awenex Diodenlaser 4 Wellenlängen

Awenex Diodenlaser 4 Wellenlängen

4 Wellenlängen Diodenlaser! Zuverlässig und auf dem modernstem Stand der Technik dabei absolut innovativ. Der Diodenlaser ATW 2000 besticht durch seine Energiereserven und LED Display. Willkommen im Zeitalter der fortschrittlichen Schönheitsbehandlungen! Wir präsentieren stolz den Awenex Diodenlaser, der Ihre Erwartungen übertreffen wird. Mit seinen 4 Wellenlängen, LED Display und einzigartigen Energiereserven und Zuverlässigkeit ist dieser Laser das ultimative Werkzeug für professionelle Beauty-Experten. Der Awenex Diodenlaser ist speziell entwickelt worden, um die Bedürfnisse unserer anspruchsvollen Kunden zu erfüllen. Mit seinen 4 Wellenlängen (808 nm, 755 nm, 1064 nm und 532 nm) bietet dieser Laser eine breite Palette an Anwendungsmöglichkeiten. Egal ob Haarentfernung, Hautverjüngung oder Pigmententfernung - mit dem Awenex Diodenlaser sind Sie bestens ausgestattet. Das LED Display ermöglicht es Ihnen, alle Einstellungen und Behandlungsparameter auf einen Blick zu überprüfen. Dank der intuitiven Benutzeroberfläche ist die Bedienung kinderleicht. Sie können die gewünschte Wellenlänge, Energieintensität und Pulsdauer ganz einfach anpassen, um die perfekte Behandlung für Ihre Kunden zu gewährleisten. Was den Awenex Diodenlaser wirklich von anderen Lasern abhebt, sind seine einzigartigen Engeriereserven und Zuverlässigkeit. Der Laser verfügt über eine hohe Energieeffizienz, was bedeutet, dass er länger arbeiten kann, ohne überhitzt zu werden. Dies ermöglicht Ihnen eine unterbrechungsfreie Behandlung und spart Ihnen Zeit und Geld. Darüber hinaus ist der Awenex Diodenlaser äußerst zuverlässig. Sie können sich darauf verlassen, dass er auch bei anspruchsvollen Behandlungen stets die besten Ergebnisse liefert. Dank seiner robusten Bauweise und hochwertigen Materialien ist der Laser langlebig und bereit für den täglichen Einsatz in Ihrem Schönheitssalon. Überzeugen Sie sich selbst von der Leistungsfähigkeit des Awenex Diodenlasers und steigern Sie Ihren Umsatz. Ihre Kunden werden von den sichtbaren Ergebnissen begeistert sein und immer wieder zu Ihnen zurückkehren. Warten Sie nicht länger und investieren Sie in die Zukunft Ihres Geschäfts mit dem Awenex Diodenlaser. Bestellen Sie jetzt und profitieren Sie von unserem exklusiven Angebot. Der Awenex Diodenlaser wird Ihr Beauty-Business revolutionieren und Ihnen einen Wettbewerbsvorteil verschaffen. Zögern Sie nicht und lassen Sie sich noch heute vom Awenex Diodenlaser überzeugen!
Laserabtragung und Lasermikrostrukturierung

Laserabtragung und Lasermikrostrukturierung

Werden feinste Schichten eines Materials abgetragen oder definierte Strukturen auf einer Oberfläche erzeugt, so spricht man von der Laserabtragung bzw. Lasermikrosrukturierung. Weitere Informationen unter https://lasermikrobearbeitung.de/ Vorteile des Lasermikrostrukturierens • Außerordentliche Flexibilität und Genauigkeit für detailreiche Strukturierungen • Aufgrund des sehr geringen Wärmeeintrags können sehr dünne (<10 µm) und hitzeempfindliche Materialien bearbeitet werden. Eine Nachbearbeitung ist nicht nötig. • Die Bearbeitung weist eine geringe Rauigkeit auf. • Die Bearbeitung von beliebig geformten Oberflächen ist möglich. • Die Veränderung der Eigenschaften der Oberflächen wird allein durch die Laserstrukturierung erreicht. Eine zusätzliche Beschichtung ist nicht notwendig. • Berührungsloses Verfahren • Kein Werkzeugverschleiß Bearbeitbare Materialien sind u.a.: • Metalle • Keramiken • Glas • Polymere • Halbleiter • Faserverbundstoffe • Dünnschichtsysteme Einsatzgebiete • Medizintechnik • Elektronik • Automobilindustrie • Halbleiterindustrie • Displayindustrie • … Abtragen und Mikrostrukturieren mit dem Laser Aufgrund seiner hervorragenden Fokussierbarkeit ist der Laser in der Lage, Materialien wie Metalle, Keramiken, Polymere oder Schichtssysteme äußerst präzise und sogar selektiv abzutragen. Die Laserbearbeitung stellt somit eine einzigartige Option, die höchste Qualität und Präzision bei gleichzeitig höchster Effizienz und Durchsatz erreicht. Darüber hinaus ist auch der selektive und berührungslose Materialabtrag für bestimmte Prozesse essentiell. Je nach Qualitätsanforderungen wird bei der Laserstrukturierung auf Kurzpuls- oder Ultrakurzpulslaser als Mittel der Wahl zurückgegriffen. Voraussetzung für eine effiziente Bearbeitung ist der Einsatz einer Laserquelle mit optimaler Strahlqualität, hoher Ausgangsleistung und Pulswiederholrate. Mithilfe dieser Laserquellen ist es möglich, kleinste Mikrostrukturen im Bereich weniger Mikrometer zu erzeugen, 3D-Objekten herzustellen, Funktionsschichten oder Beschichtungen selektiv abzutragen. Anwendungsbeispiele: Laserstrukturierung in der Photovoltaik Im Rahmen der Herstellung von Solarzellen garantiert der Einsatz des Lasers einen sehr hohen Wirkungsgrad und Durchsatz bei geringster Materialschädigung und exzellenter Präzision. Gegenüber traditionellen Bearbeitungsverfahren bietet der Laser besonders Vorteile vor allem bei berührungslosem Energieeintrag, der exakten Steuerung der Energiezufuhr sowie der Flexibilität in der Strahlenführung. Dies bewirkt Steigerung der allgemeinen Effizienz der Photovoltaikzelle auf Grund von Reduktion bei Materialschäden sowie der Minimierung von Ausfallraten. Flexible Dünnschichtsysteme In der Photovoltaikindustrie hat sich die Dünnschichttechnologie auf Glas und flexiblen Substraten im Laufe der Jahre bewährt. Verwendete Technologien stellen dabei Cadmium-Tellurid-Solarzellen (CdTe) und Kupfer-Indium-Gallium-Selenid-Module (CIS/CIGS) dar. Die nur wenige Mikrometer dicke verwendeten transparenten Leitschichten (TCO), Silizium- und Metalldünnschichten werden in drei Prozessschritten (P1, P2, P3) mit einem Laser und unterschiedlichen Wellenlängen (IR, VIS, UV) selektiv entfernt. Die Kombination aus Hochleistungslasern und schnellen und hochpräzisen Maschinenlösungen sichert die erforderliche Effizienz fertiger Solarzellen bei gleichzeitiger Minimierung von Materialverlusten. Weitere Einsatzgebiete von Laserabtragung und –mikrostrukturierung sind • Oberflächenmodifizierung in der Medizintechnik und Mikrofluidik • Beschriften und Strukturieren in der Halbleiter- und Photovoltaikindustrie • Entfernen von Schichten und Beschichtungen, z. ITO / TCO zu flexiblen elektronischen Komponenten, einschließlich LED-, µLED- und OLED-Technologien, • 2D- oder 3D-Strukturierung und • Laser-Mikrogravuren • Selektiver Abtrag von Leiterbahnen für die Mikrofluidik • Abtragen von Metallschichten für die medizinische Industrie • Unter- oder Oberflächenmarkierung von transparenten Materialien
Stanz-Laser-Bearbeitung

Stanz-Laser-Bearbeitung

Bei der kombinierten Stanz-Laser-Bearbeitung werden die Vorteile beider Verfahren in einer Maschine vereint. Unsere High-End Maschine TruMatic 7000 steht für anspruchvollste Anforderungen an Teilequalität, Produktivität und Flexibilität.
Laserhärten - Lohnfertigung

Laserhärten - Lohnfertigung

Laseroberflächenhärten mit Einhärtetiefen von 0,1 mm bis 2,0 mm. Wir führen Oberflächenhärtungen (Einhärtetiefen 0,1mm bis max. 2mm) an fertig bearbeiteten (z. B. geschliffenen) Werkstücken mit Nd:YAG-, Faser- und Diodenlasern, nahezu verzugsfrei durch. Wir nutzen verschiedene NC-Anlagen mit 3 bis 6 Achsen. Durch den Einsatz eines 6-Achs-Roboters können wir große Stückzahlen von Kleinbauteilen effektiv in Serie fertigen. Mit Hilfe von Spezial-Härteoptiken werden hoher Durchsatz und Prozesssicherheit gewährleistet und durch den Einsatz von Pyrometern wird eine optimale Regelung und Überwachung des Härteprozesses sicher gestellt. Wir fertigen für Sie metallographische Querschliffe und Härtemessungen an.
Laserhärten, Laser-Pulver-Auftragschweißen, Laserauftragschweißen

Laserhärten, Laser-Pulver-Auftragschweißen, Laserauftragschweißen

Oberflächenbehandlung mittels Lasertechnik, Laserhärten, Laser-Pulver Auftragschweißen, Scannen/Digitalisieren Die Porsche Werkzeugbau GmbH verfügt über eine Laser-Pulver-Auftragsschweißanlage, welche folgende Oberflächenbehandlungen bietet: -Laserhärten -Laser-Pulver Schweißen -Scannen/Digitalisieren (Laserscanner an Schweißoptik angebaut) Leistungsparameter der Anlage: -6kW Diodenlaser -Raumgröße (mm): 5000x2500x1500
Selektives Lasersintern (SLS)

Selektives Lasersintern (SLS)

Einsatzbereite Werkstücke mit hoher Belastbarkeit. Beim Lasersintern wird pulverförmiges, oft metallisches Ausgangsmaterial per Laser lokal aufgeschmolzen. Die Schichtstärke beträgt O,1 – 0,3 mm. Auf Basis der Daten des 3D-CAD-Modells im STL-Format wird das Werkstück Schicht für Schicht im Pulverbett erzeugt. Es entsteht ein passgenaues, mechanisch belastbares Werkstück zur direkten Verwendung. Als Einzelstück oder in Kleinserie.
Werkstoffprüfung, Schichtdickenprüfung

Werkstoffprüfung, Schichtdickenprüfung

Unsere Schichtdickenprüfung bietet eine präzise und zuverlässige Methode zur Bestimmung der Dicke von Beschichtungen auf Ihren Werkstoffen. Diese Prüfungen sind entscheidend für die Qualitätssicherung und gewährleisten, dass Ihre Beschichtungen den erforderlichen Spezifikationen entsprechen. Wir bieten eine Vielzahl von Schichtdickenprüfungen an, die auf Ihre spezifischen Anforderungen zugeschnitten sind. Durch die Anwendung unserer Schichtdickenprüfungen können Sie die Qualität und Leistungsfähigkeit Ihrer Beschichtungen sicherstellen. Unsere Prüfungen bieten zudem wertvolle Einblicke in die Eigenschaften Ihrer Beschichtungen, was Ihnen hilft, fundierte Entscheidungen für Ihre Produktionsprozesse zu treffen. Vertrauen Sie auf unsere Expertise im Bereich der Werkstoffprüfung und profitieren Sie von den zahlreichen Vorteilen, die unsere Prüfungen bieten.
wireM | coaxial laser welding head | coaxworks

wireM | coaxial laser welding head | coaxworks

Laser welding head for laser wire deposition, 3D metal printing and additive repair cladding. Process advantages: ☑ Flexible and direction-independent welding with robust 3‑beam design ☑ Productive processes with up to a maximum of 4 kW laser power and up to 2.5 kg/h deposition rate ☑ Minimal material influence on the workpiece due to precise laser beam Integration advantages: ☑ Clean, resource-saving and low-maintenance installation solution through 100% utilisation of the filler wire ☑ Reproducible and long-term constant manufacturing quality due to automated mode of operation ☑ Collision protection integrated close to the process to avoid machine damage The coaxial laser welding head wireM is an interchangeable equipment for robot and CNC laser processing machines. It convinces in research and teaching as well as in the industrial environment with a compact design, simple operability and durable robustness. The latest version offers numerous configuration variants and even more technical interfaces for peripherals. Integrated functions (amongst others): > Near-process, coaxial collision protection shutdown > Three partial laser beams aligned to a triple focus > Three cross jets and three down jets each for high volume flow in front of the protective glasses > Compact interchangeable sliders for the three protective glasses of the partial laser beams > Easily exchangeable wire nozzle for different wire diameters > Slim and protective gas nozzle close to the process > Precise XYZ adjustment option for the wire > Two cooling circuits to the optics and the wire nozzle Deviating special configurations are possible on customer request. You can learn more on our website. To do this, click on the link "Supplier's website" right sidebar above! coaxworks - Innovations for Laser Wire Deposition Producing Country: Germany Dimensions: 500 x 160 x 210 mm³ (height x width x depth, depending on configuration) Weight: ~10 kg without peripherals (depending on configuration); ~15 kg with peripherals (such as utilities kables, wire drive, laser fibre connector, camera, etc.) Wire diameter: 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.6 mm (selectable depending on configuration) Materials: Steel, nickel, titanium, copper and cobalt alloys as solid wire (typical). Extended special materials: aluminium, zinc and tin light alloys; gold and silver alloys; high alloyed cored wires Stickout (free wire length): 0.4 | 0.6 mm wire diameter ≙ 5 to 10 mm; 0.8 | 1.0 | 1.2 | 1.6 mm wire diameter ≙ 10 to 15 mm Laser types: Fibre-coupled solid-state lasers (diode lasers, fibre lasers and disk lasers) Laser mode: Continuous wave CW (typical) Laser power: ≤4 kW Deposition rate: ≤2.0 kg/h (for steel alloys); ≤2.5 kg/h (with hot-wire add-on for steel alloys) Laser wavelengths: 900 to 1100 nm (typical) Numerical aperture (NA): 0.1 | 0.2 (configuration dependent) Fibre connector socket: LLK-D | QBH (configuration dependent) Accessibility: ~40° (aperture of the outer 3 beam cone related to the tool centre point TCP) Optional equipment: Wire feeder, process camera, hot-wire equipment, shielding gas chamber adapter and special configurations
Selektives Lasersintern (SLS)

Selektives Lasersintern (SLS)

Über das Selektive Lasersintern (SLS) werden räumliche Strukturen aus einem pulverförmigen Ausgangsstoff hergestellt. Schicht für Schicht wird durch einen Laser das 3D Druck Modell erstellt. Unter „Sintern“ wird ein Rapid Prototyping Verfahren verstanden, bei dem die Herstellung von 3D Modellen mithilfe eines Laserstrahls erfolgt. Das Ausgangsmaterial liegt in feiner Pulverschicht, deren Partikel der Laser verschmilzt und so das Pulver Schicht für Schicht miteinander verbindet. Demnach werden über das Selektive Lasersintern (SLS) räumliche Strukturen aus einem pulverförmigen Ausgangsstoff hergestellt. Dabei ist die Verarbeitung von verschiedenen kunststoffähnlichen Materialien möglich. SLS verschmilzt selektiv Pulvermaterialien wie Nylon, Elastomere, Alumide oder Polyamide. Auch bei diesem 3D Verfahren bildet eine 3D Grafikdatei des gewünschten Objektes die Grundvoraussetzung zur Herstellung des 3D Modells. Vorteile:: Hohe Stabilität, kostengünstige Fertigung, lackierbar, Bio-Zertifikat Nachteile:: Leicht raue Oberfläche Farben:: Grundfarbe: Weiß, Verschiedene Farben: durch Einfärben möglich Bauteilgenauigkeit:: ~ 400 µm Zugfestigkeit RM:: ~ 48 N/mm² Max. Betriebstemperatur:: 80 °C (kurzzeitig bis 160°C) Härte:: 75 Shore D Min. Wandstärke:: 0,7 mm Schichtstärke:: 0,1 mm Max. Bauraumgröße:: 700 x 380 x 560 mm (größere Modelle durch mehrteilige Fertigung möglich)
Selektives Lasersintern (SLS)

Selektives Lasersintern (SLS)

Über das Selektive Lasersintern (SLS) werden räumliche Strukturen aus einem pulverförmigen Ausgangsstoff hergestellt. Schicht für Schicht wird durch einen Laser das 3D Druck Modell erstellt. Unter „Sintern“ wird ein Rapid Prototyping Verfahren verstanden, bei dem die Herstellung von 3D Modellen mithilfe eines Laserstrahls erfolgt. Das Ausgangsmaterial liegt in feiner Pulverschicht, deren Partikel der Laser verschmilzt und so das Pulver Schicht für Schicht miteinander verbindet. Demnach werden über das Selektive Lasersintern (SLS) räumliche Strukturen aus einem pulverförmigen Ausgangsstoff hergestellt. Dabei ist die Verarbeitung von verschiedenen kunststoffähnlichen Materialien möglich. SLS verschmilzt selektiv Pulvermaterialien wie Nylon, Elastomere, Alumide oder Polyamide. Auch bei diesem 3D Verfahren bildet eine 3D Grafikdatei des gewünschten Objektes die Grundvoraussetzung zur Herstellung des 3D Modells. Vorteile:: Hohe Stabilität, kostengünstige Fertigung, lackierbar, Bio-Zertifikat Nachteile:: Leicht raue Oberfläche Farben:: Grundfarbe: Weiß, Verschiedene Farben: durch Einfärben möglich Bauteilgenauigkeit:: ~ 400 µm Zugfestigkeit RM:: ~ 48 N/mm² Max. Betriebstemperatur:: 80 °C (kurzzeitig bis 160°C) Härte:: 75 Shore D Min. Wandstärke:: 1 mm Schichtstärke:: 0,1 mm Max. Bauraumgröße:: 320 x 320 x 580 mm (größere Modelle durch mehrteilige Fertigung möglich)
Laserschutzgehäuse für maximale Sicherheit in der Laserbearbeitung

Laserschutzgehäuse für maximale Sicherheit in der Laserbearbeitung

Das Laserschutzgehäuse der Beschriftungstechnik Gärtner GmbH bietet eine zuverlässige und robuste Lösung zum Schutz vor schädlicher Laserstrahlung bei industriellen Anwendungen. Diese Gehäuse sind speziell für den Einsatz in der Laserbearbeitung konzipiert und gewährleisten höchste Sicherheit für Bediener und Umgebung. Sie schützen effektiv vor direkter und indirekter Laserstrahlung und erfüllen alle relevanten Sicherheitsnormen. Unsere Laserschutzgehäuse lassen sich einfach in bestehende Laseranlagen integrieren und bieten eine flexible Lösung für vielfältige Einsatzbereiche in der Industrie. Unsere Leistung umfasst: Schutz vor Laserstrahlung während des Markiervorgangs Laserschutzfenster zur risikofreien Überwachung des Innenraums Sicherheitsschalter verhindert Verletzungen durch Laserstrahlung während der Beschriftung Teleskoptisch zur komfortablen Platzierung des Werkstücks Anschluss für Laserrauchgasabsaugung vorbereitet Lasergehäuse in Laserschutzklasse 1 mit CE-Konformitätserklärung Eigenschaften und Vorteile: Maximaler Laserschutz: Die Laserschutzgehäuse bieten einen umfassenden Schutz vor direkter und gestreuter Laserstrahlung und erfüllen die geltenden Sicherheitsvorschriften, wie die Laserklassen 1 und 4, um den sicheren Betrieb Ihrer Laseranlage zu gewährleisten. Robuste Konstruktion: Unsere Gehäuse sind aus hochwertigen und langlebigen Materialien gefertigt, die eine lange Lebensdauer sowie hohe Widerstandsfähigkeit gegen äußere Einflüsse und intensive Nutzung bieten. Einfache Integration: Die Laserschutzgehäuse lassen sich problemlos in bestehende Laserbearbeitungsanlagen integrieren und bieten eine nahtlose Anpassung an verschiedene Lasergeräte und Arbeitsumgebungen. Modulare Bauweise: Dank der modularen Konstruktion können die Gehäuse flexibel an spezifische Anforderungen angepasst werden, egal ob für kleine oder große Laseranwendungen. So ermöglichen sie maßgeschneiderte Lösungen für jede Branche. Optimierte Ergonomie: Unsere Laserschutzgehäuse sind nicht nur sicher, sondern auch ergonomisch gestaltet, um eine einfache Bedienung und Wartung zu ermöglichen. Bediener profitieren von optimaler Zugänglichkeit und einer benutzerfreundlichen Steuerung. Visuelle Überwachung: Viele unserer Laserschutzgehäuse sind mit Sichtfenstern ausgestattet, die den sicheren Blick auf den Laserprozess ermöglichen, ohne die Schutzwirkung zu beeinträchtigen. Reduzierung von Stillstandszeiten: Durch den zuverlässigen Schutz vor Laserstrahlung wird das Risiko von Arbeitsunfällen minimiert, was die Sicherheit erhöht und gleichzeitig Ausfallzeiten verringert. Anpassungsfähig für verschiedene Lasersysteme: Unsere Laserschutzgehäuse können für verschiedene Arten von Lasersystemen wie Faserlaser, CO2-Laser und Diodenlaser konfiguriert werden. Zukunftssicher: Die Konstruktion unserer Gehäuse lässt sich bei Bedarf an neue Technologien oder erweiterte Anforderungen anpassen, was Ihnen eine langfristige Investitionssicherheit bietet. Die Laserschutzgehäuse von Beschriftungstechnik Gärtner GmbH bieten eine optimale Kombination aus Sicherheit, Funktionalität und Flexibilität für alle Branchen, in denen Laserbearbeitung eingesetzt wird. Vertrauen Sie auf unsere Erfahrung und sichern Sie Ihre Produktionsprozesse effektiv ab.
Lasersysteme für präzise industrielle Kennzeichnungslösungen

Lasersysteme für präzise industrielle Kennzeichnungslösungen

Lasersysteme sind eine fortschrittliche Lösung für die industrielle Kennzeichnung, die Präzision und Effizienz vereint. Diese Systeme nutzen die Kraft des Lasers, um dauerhafte Markierungen auf einer Vielzahl von Materialien zu erzeugen, von Metallen bis zu Kunststoffen. Sie sind ideal für Anwendungen, bei denen eine hohe Genauigkeit und Beständigkeit erforderlich sind. Lasersysteme sind in der Lage, komplexe Designs, Barcodes und Seriennummern mit Leichtigkeit zu erstellen, was sie zu einer bevorzugten Wahl für viele Branchen macht. Die Vorteile von Lasersystemen sind zahlreich. Sie bieten eine berührungslose Markierungsmethode, die das Risiko von Materialbeschädigungen minimiert. Darüber hinaus sind sie wartungsarm und haben eine lange Lebensdauer, was die Betriebskosten senkt. Lasersysteme sind auch umweltfreundlich, da sie keine Tinten oder Chemikalien benötigen. Mit ihrer Fähigkeit, unter rauen Bedingungen zu arbeiten, sind sie eine zuverlässige Lösung für Unternehmen, die ihre Kennzeichnungsprozesse verbessern möchten. Eigenschaften und Vorteile: Präzise Markierungen: Mit unseren Lasersystemen erzielen Sie scharfe, kontrastreiche Markierungen, die besonders bei filigranen Details und komplexen Grafiken überzeugen. Die Genauigkeit des Lasers erlaubt es, feinste Linien und Symbole auf kleinstem Raum darzustellen. Langlebigkeit und Beständigkeit: Die mittels Lasertechnologie aufgebrachten Markierungen sind äußerst widerstandsfähig gegen äußere Einflüsse wie Abrieb, Chemikalien und hohe Temperaturen, was die Lebensdauer und Haltbarkeit der Kennzeichnung deutlich verlängert. Materialvielfalt: Unsere Lasersysteme eignen sich für eine breite Palette von Materialien, darunter Metalle, Kunststoffe, Glas und organische Stoffe wie Holz oder Leder. Dies macht sie universell einsetzbar in verschiedensten Industrien wie der Automobilbranche, Elektronik, Verpackung und Medizintechnik. Hohe Effizienz: Die Lasertechnologie ermöglicht es, Kennzeichnungsprozesse in hohem Tempo durchzuführen, ohne die Qualität der Markierung zu beeinträchtigen. Dadurch eignen sich unsere Lasersysteme optimal für die Integration in automatisierte Fertigungsprozesse. Kosteneffizient: Dank der geringen Betriebskosten und der Tatsache, dass keine Verbrauchsmaterialien wie Tinte oder Etiketten benötigt werden, sind unsere Lasersysteme eine besonders wirtschaftliche Lösung für Unternehmen jeder Größe. Umweltfreundlich: Lasersysteme arbeiten ohne Chemikalien oder Abfallprodukte und sind somit eine umweltfreundliche Alternative zu traditionellen Kennzeichnungsverfahren. Flexibilität und Anpassungsfähigkeit: Ob Serienproduktion oder individuelle Markierungen – unsere Lasersysteme lassen sich problemlos an verschiedene Anforderungen und Produktionsumgebungen anpassen.
2-D Laserbearbeitung

2-D Laserbearbeitung

Laserschweißen von Mikro bis Makro, auf dem Handplatz oder der 6-Achs-CNC-Anlage - Fragen Sie uns an! Hochfeste Fügeverbindungen mit optisch ansprechenden Schweißnähten Mit dem Verfahren Laserschweißen fertigen wir Präzisionsnähte an Bauteilen aus Metall in hohen Geschwindigkeiten. Uns stehen gepulste und kontinuierlich strahlende Laser hoher Strahlqualität bis 3,5kW-cw-Leistung und 7kW-pw-Leistung zur Verfügung. Wir erreichen damit beispielsweise folgende Einschweißtiefen: in Stahl bis 8 mm, in Aluminiumlegierungen bis ca. 3 mm, in Titan bis 8 mm. Im Feinschweißbereich erreichen wir Nahtbreiten bis herab zu 0,1 Millimetern. Verbindungen an schweißkritischen Materialien (wie z. B. Sinterwerkstoffe oder Keramik) sowie qualitativ hochwertige Schweißverbindungen (z. B. heliumdicht) sind an einem breiten Werkstoffspektrum ausführbar. Schweißkritische Werkstoffe können durch Vorwärmtechnologien oder Zugabe von Zusatzwerkstoffen sicher verarbeitet werden. Wir nutzen induktive und scannende Vorwärmtechniken. Für die Zusatzwerkstoffzufuhr steht uns ein breites Spektrum von Draht- und Pulverförderern zur Verfügung. Wir schweißen DIN-gerecht z. B. nach Druckbehälterrichtlinie und verfügen über umfangreiche Möglichkeiten zur Prozessdokumentation wie z. B. Leistungsmitschriften, Schweißleuchtüberwachung und Qualitätsüberwachung mit Mitteln der modernen Bildverarbeitung.
Laser Lift Off (LLO) &  Laser Induced Forward Transfer (LIFT) für MikroLED und weitere Substrate

Laser Lift Off (LLO) & Laser Induced Forward Transfer (LIFT) für MikroLED und weitere Substrate

Excimer Laser-Lift-Off mittels Square- oder Line-Beam-System. Weitere Informationen unter https://lasermikrobearbeitung.de/ Ihre Vorteile: • Langjährige Erfahrung und technologische Kompetenz in der Laserbearbeitung von Display- und Halbleitersubstraten • Unser LIFT-Modul für den industriellen Massentransfer garantiert höchste Kosteneffizienz durch 10-fach höhere Transferraten gegenüber Wettbewerbstechnologien und bietet Ihnen damit ein enormes Kostensparpotenzial • Transferraten von bis zu 1 Mio. MikroLED pro Stunde • Substratgrößen: bis zu 4-Zoll-Donor-Wafer und 6-Zoll-Receiver-Wafer • Ab Frühling 2023: Große Flexibilität in der Substratgröße – 6-Zoll-Donor-Wafer und bis zu Gen. 2 Empfänger-Substraten • In unserem Reinraum ist immer die passende Laserquelle für Ihre Anwendung verfügbar – egal ob Sie einen Excimer-Laser mit einer hohen Flächenleistung für einen selektiven Einsatz bevorzugen oder lieber einen scannerbasierten Festkörperlaser bevorzugen. • Selektiver RGB-LIFT von drei Donor-Substraten und der Color-Conversion Ansatz über nur ein Donor-Substrat ist beides möglich Zusätzliche technische Informationen: • Chip-Größe bis zu 5 µm • Straßen-Breite bis zu 5 µm • Positioniergenauigkeiten von weniger als 1 μm möglich • Abstand zwischen Donor-Wafer und Empfänger-Substrat bis +50 µm • Geeignet für MikroLED, miniLED und LED • Nutzung unterschiedlicher Laserquellen Bearbeitbare Materialien sind u.a.: • Glass inkl. Saphir • Glass ohne Saphir • Polymere Einsatzgebiet: • Display-Industrie • Halbleiterindustrie • Medizintechnik • Forschung und Entwicklung Der Displaymarkt unterliegt einem ständigen Wandel und regelmäßigen Neuerungen - von LCD über OLED, bis hin zu miniLED. MikroLED ist das aufkommende „next big Thing“ im Bereich von Display. Es wird prognostiziert, dass 2024 Smartwatches und bis 2027 Flagship-Smartphones mit MikroLED-Displays ausgestattet sein werden. Auch der steigende Einsatz von VR- und AR-Brillen in Industrie und im Privaten fördert die Nachfrage nach hochauflösenden MikroLED-Displays. Um bereits jetzt auf die Anforderungen von morgen gefasst zu sein, stehen wir Ihnen als kompetenter, innovativer und zuverlässiger Partner zur Seite. Mithilfe unseres innovativen und Inhouse-entwickeltem Laser-Systems microCETI ist Lohnfertigung im Rahmen von µLED-Transfer und Trimming Ihrer Displaykomponenten nun möglich. Von Prototyping, über kleine bis mittlere Chargen. Als marktweit erster Hersteller eines LIFT-Modules für die Massenherstellung sind wir der ideale Partner für die Produktion Ihrer µLED-Displays mit langjährigem Know-How im Bereich Laser-Technologien. Dabei können wir für Sie die Schritte des LLO-, LIFT- und Trimming-Prozesses übernehmen. Einzeln oder in Kombination. Anwendungsbeispiele: • Transfer von MikroLEDs mit der LIFT Methode • Timming MikroLED • Laser Lift-Off von Substraten von Semiconductor Wafer • Printing of Biomolecule Microarrays and Sensors • Printing of Cells and Tissue Engineering • Polymerstack für Röntgensensoren, flexible Leiterbahnen, usw
Laserbasierte Probenerstellung Mikrodiagnostik

Laserbasierte Probenerstellung Mikrodiagnostik

Der Bedarf an Proben-Präparationstechniken im Bereich Mikrostrukturdiagnostik steigt zunehmend. Dabei ist eine schnelle, zuverlässige, kostengünstige und artefaktfreie Probenbearbeitung wichtig. Weitere Informationen unter https://lasermikrobearbeitung.de/ - Laserschneiden und individuelle Probenvorbereitung - Analyse mittels REM und integrierter Mikroanalytik - Probenpräparation für die Mikromechanik (Dog-Bones sowie frei definierbare Geometrien) Einsatzgebiete: - Mikrodiagnostik - Fokussierte Ionenstrahl- und Rasterelektronenmikroskopie (FIB/SEM) - 3D-Analyse und Transmissionselektronenmikroskopie (TEM) - Schadensanalyse Der Bedarf an Proben-Präparationstechniken im Bereich der Mikrostrukturdiagnostik steigt zunehmend an. Dabei ist eine schnelle, zuverlässige, kostengünstige und artefaktfreie Probenbearbeitung von besonderer Wichtigkeit. Neben den traditionellen mechanischen Bearbeitungsverfahren, dominieren derzeit ionenstrahlbasierte Verfahren (z.B. Focused Ion Beam – FIB) das Feld. Ersteres ist mit sehr hohen Personalkosten verbunden, letzteres zusätzlich noch mit hohen Betriebskosten. Die laserbasierte Probenpräparation stellt hierzu eine Alternative dar. Basierend auf den patentierten microPREP™ Technologieworkflows ist dieses System in der Lage Proben für die Untersuchung mittels Transmissionselektronenmikroskop (TEM), Rasterelektronenmikroskop (REM) oder Atome-Sonden-Tomographie (APT) sowie für mikromechanische Tests mit einen sehr hohen Automatisierungsgrad herzustellen. Durch den Einsatz eines robusten Ultrakurzpulslasers werden die Betriebskosten im Vergleich zu ionenstrahlbasierter Bearbeitung deutlich reduziert. Das System eignet sich ideal für die Bearbeitung von Halbleitermaterialien, Metallen, Keramiken sowie Verbundmaterialien mit höchster Präzision und in kürzester Zeit.
wireM | Koaxialer Laserschweißkopf | coaxworks

wireM | Koaxialer Laserschweißkopf | coaxworks

Laserschweißkopf für Laserdrahtauftragschweißen, 3D-Metallaufbau und Reparatur von Oberflächen. Prozessvorteile: ☑ Flexibles und richtungsunabhängiges Schweißen mit robustem 3-Strahl-Design ☑ Produktive Prozesse mit bis maximal 4 kW Laserleistung und bis zu 2,5 kg/h Abschmelzleistung ☑ Minimale Materialbeeinflussung am Werkstück durch präzisen Laserstrahl Integrationsvorteile: ☑ Saubere, ressourcenschonende und wartungsarme Einbaulösung durch 100%ige Ausnutzung des Schweißdrahtes ☑ Reproduzierbare und langzeitkonstante Fertigungsqualität aufgrund automatisierter Funktionsweise ☑ Prozessnah integrierter Kollisionsschutz zur Vermeidung von Maschinenschäden Der koaxiale Laserschweißkopf wireM ist eine auswechselbare Ausrüstung für Roboter- und CNC-Laserbearbeitungsmaschinen. Er überzeugt in Forschung und Lehre sowie im industriellen Umfeld durch eine kompakte Bauform, einfache Bedienbarkeit und langlebige Robustheit. Die neueste Version bietet zahlreiche Konfigurationsvarianten und noch mehr technische Schnittstellen für Peripheriegeräte. Integrierte Funktionen u.a.: > Prozessnahe, koaxiale Kollisionsschutzabschaltung > Drei Laserteilstrahlen ausgerichtet auf einen Tripelfokus > Je drei Querluftdüsen (Crossjets) und Senkrechtluftdüsen (Downjets) für hohen Volumenstrom vor den Schutzgläsern > Kompakte Wechselschieber für die drei Schutzgläser der Laserteilstrahlen > Einfach wechselbare Drahtdüse für verschiedene Drahtdurchmesser > Schlanke und prozessnahe Schutzgasdüse > Genaue XYZ-Justiermöglichkeit für den Draht > Zwei Kühlkreisläufe zur Optik und zur Drahtdüse Abweichende Sonderkonfigurationen sind auf Kundenwunsch möglich. Mehr erfahren Sie auf unserer Website. Dazu klicken Sie auf den Link "Anbieter-Website" rechte Seitenleiste oben! coaxworks - Innnovations for Laser Wire Deposition Abmessungen: 500 x 160 x 210 mm³ (Höhe x Breite x Tiefe, konfigurationsabhängig) Gewicht: ~10 kg ohne Peripherie (konfigurationsabhängig); ~15 kg mit Peripherie (wie Medienleitungen, Drahtantrieb, Laserfaserstecker, Kamera, u.a.) Drahtdurchmesser: 0,4 | 0,6 | 0,8 | 1,0 | 1,2 | 1,6 mm (konfigurationsabhängig wählbar) Materialien: Stahl-, Nickel-, Titan-, Kupfer- und Kobalt-Legierungen als Massivdraht (typisch). Erweitert Sondermaterialien: Aluminium-, Zink- und Zinn-Leichtmetalle; Gold- und Silber-Legierungen; Hochlegierte Fülldrähte Stickout (freie Drahtlänge): 0,4 | 0,6 mm Drahtdurchmesser ≙ 5 bis 10 mm; 0,8 | 1,0 | 1,2 | 1,6 mm Drahtdurchmesser ≙ 10 bis 15 mm Lasertypen: fasergekoppelte Festkörperlaser (Diodenlaser, Faserlaser und Scheibenlaser) Lasermodus: Dauerstrich CW (typisch) Laserleistung: ≤4 kW Abschmelzleistung: ≤2,0 kg/h (für Stahlwerkstoffe); ≤2,5 kg/h (mit Heißdrahtausrüstung für Stahlwerkstoffe) Laserwellenlängen: 900 bis 1100 nm (typisch) Nummerische Apertur (NA): 0,1 | 0,2 (konfigurationsabhängig) Fasersteckeraufnahme: LLK-D | QBH (konfigurationsabhängig) Zugänglichkeit: ~40° (Öffnungswinkel des äußeren 3 Strahlkegels bezogen auf den Werkzeugarbeitspunkt TCP) Optionale Ausstattung: Drahtförderer, Prozesskamera, Heißdrahtausrüstung, Schutzgaskammer-Adapter sowie Sonderkonfigurationen
wireXL | high power coaxial laser welding head | coaxworks

wireXL | high power coaxial laser welding head | coaxworks

10 kW laserwelding head with centric wire supply for direction-independent processing The laser welding head wireXL is based on a 3-beam optics concept with a centric wire supply for direction-independent processing. A variety of fiber-coupled industrial lasers up to an output of 10 kW can be used as a beam source. In the standard version, the head is equipped with a drive for wire diameters in the range 0.8 - 1.6 mm. With peripheral systems and media lines, a total weight of approx. 25 kg must be taken into account for integration into a laser machine. The laser welding head wireXL has the following technical features: > a deflection sensor to protect against damage in the event of collisions or process errors, > an XYZ adjustment unit for precise adjustment of the laser spot – wire input arrangement, > shielding the built-in cover glasses by means of crossjet against splashes, > the reduction of fume contamination on the cover glasses by an integrated downjet and > the possibility to replace the protective glasses by means of interchangeable slides. Please send us your specific request by e-mail! coaxworks - UPGRADE YOUR WELDING Producing Country: Deutschland Weight: ~25 kg Wire diameter: 0.8 | 1.0 | 1.2 | 1.6 mm (selectable depending on configuration)